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SUMMARY

Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady,
two-dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder.
Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén
number �. The flow and magnetic field are uniform and parallel at large distances from the cylinder.
The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects
of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing
vortex and pressure are presented and discussed. For low interaction parameter (N<1), the suppression
of the flow-separation is nearly independent of the conductivity of the fluid, whereas for large interaction
parameters, the conductivity of the fluid strongly influences the control of flow-separation. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Magnetic fields are employed in problems related to melting, levitating, stabilizing liquid metals,
growing semiconductor single crystals, reducing drag in duct flows, designing fusion reactors,
flow-controls for hypersonic vehicles and in controlling turbulence and in nanofluditics. Depending
on the application, the magnetic Reynolds number Rm can vary dramatically. For instance, in
two-dimensional steady magneto-aerodynamics, Rm of the order of unity is permissible [1]. In
astrophysical problems, Rm can be extremely high, of the order 102–106. On the contrary, for flows
involving liquid metals and semiconductors it will vary over a wide range 10−5–1. An interesting
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Figure 1. Schematic representation of the flow configuration.

area where Rm is small is electrokinetics-based microfluidics where convenient and efficient
mechanisms for manipulating and controlling liquid flows in micro-devices are needed. Modelling
and understanding fluid flows in microscale geometry, especially in microchannels, are important
in the design and control of various micro-electromechanical systems and many other instruments
used in modern technology. It has been appreciated that combined electromagnetohydrodynamic
effects can potentially be utilized to enhance the liquid flow rates in microchannels. Experimentally,
it has been shown [2] that the average flow rates in micropumps can be substantially augmented
by employing low magnetic fields. Recently, the influence of electromagnetic fields on the surface
tension-driven flow in a parallel plate microchannel under the assumption of negligible magnetic
Reynolds number has been analyzed [3]. For low values of Rm, the cylinder wake control and their
instabilities in an external magnetic field have been studied [4] and the non-monotonic behavior of
the cylinder wake using vorticity-streamfunction formulation is observed at low, moderate and high
Reynolds numbers [5–7]. In any case, at low or negligible values of Rm, when an external magnetic
field is present, it is customary to make use of the so-called quasi-static (QS) approximation. In
this approximation, induced magnetic fluctuations are much smaller than the applied magnetic
field and the overall magnetic effect amounts to adding in the Navier–Stokes equations an extra
damping term, which affects only Fourier modes having a component parallel to the magnetic
field. The derivation of the QS approximation involves taking the limit of vanishing Rm and hence
its domain of validity is an interesting question. Indeed, certain applications, such as advanced
schemes for the control of magnetogasdynamic flows around hypersonic vehicles, involve values
of Rm of the order of 1–10 [8]. Recently, Knaepen et al. [9] presented the limitations of QS
approximation in the magnetohydrodynamic turbulence at moderate magnetic Reynolds number
in the range 0.1�Rm�20.
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Figure 2. Schematic representation of the forces acting on the cylinder.

In essence, we have highlighted numerical and theoretical investigations on a variety of physical
problems where the QS approximations are invariably used. It is known that for a fluid of extremely
high conductivity, steady-state solutions do exist [10]. Recently, it is reported that with increasing
Hartmann number, the difference between the solutions of the full MHD equations and low-Rm
approximation increases, and in particular, for Prandtl numbers reaching lower values like those
of liquid metals, this difference increases [11]. Hence, in this present study the steady flow control
problem around a circular cylinder with an aligned magnetic field is considered by taking the
magnetic Reynolds number into consideration (i.e. induced magnetic field) in the range 0�Rm�2
and its effect on the flow is studied. We also compare our full MHD results with those obtained
under QS approximation where possible.

2. FORMULATION OF THE PROBLEM

The equations governing the motion of an electrically conducting fluid past a circular cylinder
with a uniformly applied magnetic field at large distances are, in non-dimensional form,

∇×q=x (1)

(q·∇)q=−∇ p+ 2

Re
∇2q+�j×H (2)

j=∇×H= Rm

2
[E+q×H] (3)

∇ ·q=0 (4)
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Figure 3. Streamlines for Re=40, Rm=0.5, �=0, 2, 4, 8, 12 and 16 (a–f, top to bottom).

∇ ·H=0 (5)

∇×E=0 (6)

where p is the pressure, q the fluid velocity, H the magnetic field, E the electric field, j the current
density and x the vorticity. The Reynolds number is Re=2Ua/� and the magnetic Reynolds
number is given by Rm=2aU��. The Alfvén number � is the ratio of the square of the Alfvén speed
to the square of the main stream speed. The kinematic viscosity, density, magnetic permeability and
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Figure 4. Streamlines for Re=40, Rm=1, �=0, 1, 2, 4, 6 and 8 (a–f, top to bottom).

electrical conductivity of the fluid are �, �, � and �, respectively. Since the flow is two dimensional,
E=(0,0,0). Cylindrical polar co-ordinates (r,�, z) are used as they are the most suitable in dealing
with cylindrical boundaries. A schematic diagram showing the flow configuration is depicted in
Figure 1.

The co-ordinate system is set up such that the velocity and magnetic field are parallel at large
distances and the flow is symmetric, about �=0 and 180◦. In addition,

q=(qr ,q�,0), H=(hr ,h�,0) and j=(0,0, j) (7)
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Figure 5. Streamlines for Re=40, Rm=2, �=0, 0.5, 1, 2, 3 and 4 (a–f, top to bottom).

In order to satisfy Equations (4) and (5) the dimensionless stream function �(r,�) and magnetic
stream function A(r,�) are introduced such that

qr = 1

r

��

��
, q� =−��

�r
(8)

hr = 1

r

�A
��

, h� =−�A
�r

(9)
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Figure 6. Dependence of separation angle � and the separation length l on the magnetic field �.

Substitution of (7)–(9) in (1)–(3) with the transformation r =e	
 and �=	� yields, in the vorticity-
stream function form, the following:

�2�

�
2
+ �2�
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+	2e2	
�=0 (10)
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(12)

The following pressure Poisson equation that is obtained by taking divergence of Equation (2) is
then solved to find the pressure in the flow field:

−
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(13)

2.1. Boundary conditions

Equations (10)–(12) must now be solved subject to the following boundary conditions. On the
surface of the cylinder, no-slip condition is applied. At far off distances (
→∞) uniform flow
is imposed. In order to avoid computation of magnetic field inside the cylinder, we assume that
the cylinder has infinite electrical conductivity. Such assumption of using a perfectly conducting
cylinder has been reported [12]. The boundary conditions applied are

• on the surface of the cylinder: �=��/�
=0,�=−(1/	2)(�2�/�
2), A=0;
• at large distances from the cylinder: �∼e	
 sin(	�),�→0, A→e	
 sin(	�);
• on the axis of symmetry: �=0, �=0, A=0.

For Equation (13) the boundary conditions are

• on the surface of the cylinder (
=0): �p/�
=−(2/Re)(��/��);
• at large distances from the cylinder (
→∞): p=0;
• along the axis of symmetry (�=0,�=1): �p/��=0.

3. SOLUTION PROCEDURE

The governing partial differential equations are solved by first applying the finite difference method
and the resulting algebraic equations are solved by using the multigrid method. Here, a recursive
multigrid procedure is employed in which the smoother is a point Gauss–Seidel iteration and the
usual coarse grid correction is applied [13, 14]. Since upwind differences are used for convective
terms, the defect correction technique [13] is employed to improve the solution to second-order
accuracy. Similar defect correction methods are recently being used [15, 16].
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(a) (b)

(c) (d)

Figure 7. The variation of �p/�� along the surface of the circular cylinder
for different values of � and Rm.

4. RESULTS AND DISCUSSIONS

We present the results obtained for Re=40 and for different values of the magnetic field � and the
magnetic Reynolds number Rm. The finest grid used here is 512×512, whereas 256×256,128×
128 are coarser grids and 64×64 is the coarsest grid. The second-order accurate solutions converged
with <10−6 obtained from the finest grid 512×512 are used for the discussion of the results. We
have uniformly chosen 41 times the radius of cylinder as far-field distance, which is sufficiently a
large domain to obtain accurate results for all values of � and Rm.

4.1. Recirculation bubble and adverse pressure gradient

It is customary to represent the interaction of magnetic field with the conducting fluid by the inter-
action parameter N , usually defined as the ratio of magnetic forces to inertial forces. If the induced
magnetic field is neglected, we have the low-Rm approximation, in which case, N is the only

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1351–1368
DOI: 10.1002/fld



1360 T. V. S. SEKHAR, R. SIVAKUMAR AND T. V. R. RAVI KUMAR

(a)

(c) (d)

(b)

Figure 8. The angular evolution of surface pressure for various values of � and Rm.

parameter. In the present problem, we have two parameters (besides Re), � and Rm, which can be
related to interaction parameter N =1/2Rm�. The radial and transverse components of magnetic
field affect the transverse and radial components of velocity respectively. A sketch of the forces
acting on the cylinder is shown in Figure 2. The effect of the magnetic field and the magnetic
Reynolds number on the streamlines for Re=40 are presented in Figures 3–5. From these figures,
it is evident that for sufficient strength of the magnetic field, the recirculation bubble behind the
circular cylinder is completely suppressed for all values of Rm. It is observed that for higher values
of Alfven number, the flow becomes straightened in the main stream direction and the curvature of
the recirculation bubble (i.e. �=0) decreases. The flow inside the recirculation bubble slows down
monotonically as the magnetic field increases. For a given applied magnetic field the suppression of
the flow-separation will be more for higher values of Rm. Further, it is noted that, when N<1, the
suppression of the recirculation bubble is mainly controlled by the strength of the magnetic field,
whereas when N>1 the conductivity of the fluid enhances the suppression even with relatively
lower magnetic field strengths (Figures 3(b), 4(b), 5(b)). The variation of the separation angle (�s)
and the length of the recirculation bubble (l) with � are depicted in Figure 6.
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Figure 9. (Top) Pressure at front stagnation; (middle) pressure at rear stagnation point and (bottom) linear
dependence of the rear pressure coefficient.

If the strength of the magnetic field is increased for a fixed Rm, the forces acting on the fluid
leads to an effective reduction in magnitude of the adverse pressure gradient in the downstream
region as shown in Figure 7(a) and (b). In addition, the position at which the adverse pressure

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1351–1368
DOI: 10.1002/fld



1362 T. V. S. SEKHAR, R. SIVAKUMAR AND T. V. R. RAVI KUMAR

0 10 20 30 40
0

5

10

15

20

0.1

0.05

0.02

0.
00

5

0.01

0.
00

2

0 10 20 30 40
0

5

10

15

20

0.1

0.05

0.02

0.01

0.
00

5

0.
00

2

0.0002

0.001

0 10 20 30 40
0

5

10

15

20

0.
00

2
0.

00
5

0.01

0.02

0.05 0.1 –0.1

–0.05

–0.02

–0.01

–0.005

–0.002

–0.001

00.0002

0.0005

0 10 20 30 40
0

–30 –20 –10

–30 –20 –10

–30 –20 –10

–30 –20

–0.1

–0.1

–0.05

–0.02

–0.01

–0.002

–0.001

–0.005

–0.05

–0.02

–0.01

–0.005
–0.002

–10

5

10

15

20

0.
00

2
0.

00
5

0.01

0.05
0.1 –0.1

–0.05

–0.02

–0.01

–0.005

–0.002

–0.001

0.02 0.0002

0.
00

05

Figure 10. Isocontours of pressure for Rm=0.5, �=0, 2, 8 and 16.

gradient exists gets pushed down (towards rear stagnation point) as the magnetic field is increased
and consequently the separation of the flow is delayed. However, for large magnetic fields, the
magnetic field is less effective in pushing down the adverse pressure gradient downstream. The
magnitudes of the adverse pressure gradient decreases with increase in strength of the magnetic
field. The region of the influence of the magnetic field increases with increase in conductivity
of the fluid. Further, the magnitude of adverse pressure gradient on the surface of the cylinder
coincides with that of zero magnetic field case, indicating that highly conducting flows (i.e. with
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Figure 11. Isocontours of pressure for �=4, Rm=0, 0.5, 1 and 2.

higher Rm) can be stabilized with relatively low magnetic fields (Figure 7(c)). For the same strength
of magnetic field, the magnitude and position of the adverse pressure gradient are reduced for
highly conducting fluids, i.e. for higher values of Rm. In addition, the occurrence of the maximum
adverse pressure gradient magnitude is shifted towards the rear stagnation point. For a given
interaction parameter (N ), the angular variation of pressure gradient is depicted in Figure 7(d). If
we were to consider the low-Rm limit, the three curves in Figure 7(d) will coincide. The higher
magnetic Reynolds number of the fluid effectively reduces the magnitude of the pressure gradient.
It also reduces the angle at which adverse pressure gradient starts.
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Figure 12. Isocontours of vorticity (left) Rm=0.5, �=2,8 and 16 and (right) �=4, Rm=0.5, 1 and 2.

4.2. Pressure fields and surface pressure

For low values of N (less than or nearly 1), the pressure near the front stagnation point decreases.
Except for this feature, the base pressure continuously increases in both the upstream and down-
stream regions. The latter feature has been experimentally observed by Josserand et al. under QS
approximation. With further increase in magnetic field (N>1), rear pressure inversion occurs, i.e.
the upstream base pressure increases continuously, whereas downstream base pressure decreases.
This is in agreement with the experimental results of Maxworthy [17] and Josserand et al. [18].
It is clear that a particular value of N can be obtained by different combinations of Rm and �.
In Figure 8(d), the angular evolution of surface pressure for the same interaction parameter N =2
is presented. In fact, the pressure near the front stagnation point decreases, whereas the pressure in
the downstream region increases. It can be observed from this figure that the magnetic Reynolds
number has the effect of altering the surface pressure, which, in turn, can control the flow sepa-
ration. For a fixed value of �, as Rm increases (Figure 8(c)) the upstream pressure increases and
the downstream pressure decreases. With regard to the magnetic field, the surface pressure at
�=90◦ (the interface between upstream and downstream regions) increases until N<1, beyond
which it decreases. This is in accordance with the experimental findings of Maxworthy [17, 19]
and Yonas [20]. The pressure at front stagnation point p (
=0,�=1) decreases until N<1 and
then increases. Similarly, the pressure at rear stagnation point p (
=0,�=0) increases until N<1
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Figure 13. The angular evolution of surface vorticity for various values of � and Rm.

and then decreases (Figure 9). The pressure at rear stagnation point varies with
√

� for N>1
(Figure 9). This feature agrees with the experimental results of Josserand et al. [18]. The pressure
fields p (
,�) in the entire flow region are presented in Figures 10 and 11. From the plots of angular
evolution of surface pressure, it is observed that in comparison with the case of zero magnetic
field, the increase in pressure around the front stagnation point is in line with the hypothesis of
Maxworthy [17, 19] that a stagnant flow develops upstream of the cylinder when the magnetic
field is increased. This feature is also observed by Josserand et al. [18].

4.3. Vortices

The vorticity of the fluid changes considerably with applied magnetic field due to the fact that the
magnetic force is proportional to fluid velocity and resists the flow of fluid in any direction other
than that of the unperturbed magnetic field near the cylinder. The length of the standing vortex is
reduced slightly and the strength of the disturbance in front and rear of the cylinder is increased with
increasing magnetic field. A growing inviscid rotational region (separation without flow reversal) is
found, which is predicted theoretically by Leibovich [21]. Here, the word ‘separation’ is intended
to mean an unbounded penetration of rotational fluid into the main stream [22]. These features can
be seen from the vorticity contours as shown in Figure 12 for various values of � and Rm. It is
also noted that, with increasing magnetic field or conductivity of the fluid, the region of positive
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Figure 14. Isocontours of current density (left) Rm=0.5, �=2, 8 and 16 and
(right) �=4, Rm=0.5, 1 and 2.

vorticity extends upstream and gets concentrated near the cylinder, whereas a negative vorticity
region is again formed at far distances. The angular variation of vorticity on the surface of the
cylinder is shown in Figure 13. It is clear from this figure that the magnetic field tends to destroy
the surface vorticity over the cylinder and, in particular, the vorticity is destroyed to a maximum
extent for N�1. The contours of the current density lines are presented in Figure 14.

4.4. Drag coefficient

The variations of pressure drag coefficient (CP), viscous drag coefficient (CV) and total drag
coefficient (CD) with � and Rm are shown in Figure 15. When compared with the zero field case,
for fluids with different conductivities, both viscous and pressure drag coefficients decrease for
small magnetic fields given by ��1. Further increase in the magnetic field leads to an increase
in the total drag coefficient. The total drag coefficient CD is found to vary with

√
� for ��2.

The linear dependence with
√
N of drag coefficient is reported experimentally by Maxworthy

[19], Yonas [20] and Josserand et al. [18]. There is a non-monotonic decrease in drag coefficient
with Rm for low magnetic fields until N ≈1 (Figure 15(c)). For higher interaction parameters, it
decreases linearly with Rm.
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(a)

(d)(c)

(b)

Figure 15. Variation of viscous drag coefficient CV, pressure drag coefficient CP, the total drag coefficient
CD as a function of � and the linear dependence of the drag coefficient with �.

5. CONCLUSIONS

In this paper, we have studied the control of flow separation using electromagnetic forces for
different conductivities of the fluid. The separation for Re=40 is fully suppressed. The non-
monotonic behavior that is observable under QS approximation in separation length and separation
angle is not found. The separation for highly conducting fluids can be suppressed with low magnetic
fields. The fluids with large conductivity have higher critical Reynolds number when compared
with fluid flows without magnetic field. When N<1, the suppression of the flow-separation is
nearly independent of the conductivity of the fluid, whereas for N�1, the conductivity of the fluid
strongly influences the control of flow-separation. The drag coefficient is found to decrease when
��1 and it increases for higher values of �. It is found that CP, CD and the pressure coefficient
at rear stagnation point p(0,0) vary with

√
� when �>1.
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